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Abstract

KO, HAK-LIM. A High Performance Parallel Architecture for Adaptive Beamform-
ing (Under the direction of Dr. Winser E. Alexander).

The objective of this dissertation is to implement a special purpose architecture
for the enhanced direction-of-arrival system (adaptive beamforming). This research
consists of two parts: the development of a new method for adaptive beamforming
and the implementation of the new method on a high performance parallel architec-
ture.

First, we propose a modified eigenvector method (MEVM) to enhance the reso-
lution for direction-of-arrival (DOA) estimation. MEVM uses the weighted forward-
backward covariance matrix to improve the estimation of the covariance matrix. This
dissertation analyzes the effect of using the weighted forward-backward covariance
matrix on the performance of the eigenvector method (EVM). We compare the con-
ventional covariance matrix method (EVM) and the weighted forward-backward co-
variance matrix method (MEVM). The simulation results show that MEVM is more
accurate and has better resolution than the conventional EVM under the same noise
conditions.

Second, we have conceptually designed a high performance architecture for the im-
plementation of MEVM. In the architecture, several modules cooperate in a pipelined
manner. However, one of the modules is very computationally intensive because the

eigenvalues and the corresponding eigenvectors of the forward-backward covariance
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matrix have to be computed. This may be the bottleneck of the system. We investi-
gate the use of the Block Data Parallel Architecture (BDPA) to avoid this bottleneck.

The BDPA is a parallel architecture that achieves high system throughput and
high system efficiency. The architecture uses a globally asynchronous and locally
synchronous clock distribution scheme to avoid the clock skew problem which may
occur in a large synchronous system. The control of the interconnection network is
simple and easy to implement because the data transfers between processors are local
and uni-directional. The architecture is flexible in the sense that the same number
of processors can be used to solve a complex set of problems whose input matrix size
may vary.

We have simulated the architecture with a programmable simulator using the tim-
ing characteristics of the TMS320C40 digital signal processor. The simulation results
consistently show that the parallel architecture can provide high performance, high

efficiency, and almost linear speedup for adaptive beamforming,.
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1

Introduction

High resolution direction-of-arrival (DOA) estimation is widely used for many multi-
sensor systems for applications such as sonar, radar, and seismic exploration. Many
high resolution algorithms based on the eigen-decomposition analysis of the observed
covariance matrix, such as MVE [24], MUSIC [50], EVM [25], SNLM [6], and SHIRE
[32] have been proposed for solving this problem. These algorithms emphasize specific
eigenvectors of the observed covariance matrix to obtain the best spectral estimate
which provides the DOA information. However, the resolution of the spectral esti-
mates for these algorithms is severely degraded when the signal-to-noise ratio (SNR)
is low and/or the arrival angles are close to each other. This is because the observed
sample covariance matrix is perturbed by correlated noise.

The quality of the estimation of the covariance matrix is very important to get the
best performance for these algorithms. Since the observed sample covariance matrix
is perturbed by correlated noise, the performance estimate of the spectrum using this
conventional covariance matrix is degraded when the signal-to-noise ratio (SNR) is
low and/or the arrival angles are close to each other. Therefore, Raghunath [45] and

Rao [47] used spatial smoothing to enhance the covariance matrix. Moghaddamjoo
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[39] used spatial filtering and Du and Kirlin [11] used temporal correlations between
multiple snapshots to estimate the covariance matrix. Basically, these methods use a
similar idea. They extract more information from the given data set.

We introduce a modified eigenvector method (MEVM). MEVM uses the weighted
forward-backward covariance matrix to improve the estimation of the covariance ma-
trix. Likewise, this method extracts more information from the given data set. Fur-
thermore, MEVM reduces the phase error of the estimated DOAs.

In this thesis, we first compare and analyze the typical high resolution algorithms
noted above. Our results show that the EVM [25] provides the best performance
when we consider the signal-to-noise ratio (SNR) of the input data and whether
or not we know the number of sources. Then, we evaluate the effect of using the
forward-backward covariance matrix on the performance of the EVM under various
conditions. Our simulation results show the performance improvement for the DOA
estimation obtained using the MEVM.

Computing eigenvalues and the corresponding eigenvectors is a necessary part of
the high performance adaptive beamforming algorithms. These computations are also
used for the recent high-resolution algorithms for many digital signal processing appli-
cations, such as array signal processing [35], system identification [8] [38], image pro-
cessing [44], spectrum estimation [14], and filter design [36]. These signal processing
algorithms require extracting the partial eigenvalues and the corresponding eigenvec-
tors from a large space. These methods usually employ an eigenvalue decomposition.
However, the eigenvalue decomposition method requires O(M?) floating point oper-

ations (flops) for an M x M matrix. Although these algorithms that use eigenvalue

o
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decomposition can usually achieve much better performance than traditional least
squares methods, their heavy computational load often makes them difficult to jm-
plement in real-time. Since these algorithms require computation of only a few of
the eigenvalues and the corresponding eigenvectors from a large space, it may not
be necessary to compute all of the eigenvalues and the corresponding eigenvectors.
Several methods exist for the partial solution of the eigenvalue problem. QR-inverse
iteration method (3], simultaneous iteration method [23] [49], and subspace iteration
method [42] [46] are frequently used. We compared these partial eigenvalue solution
algorithms based on the computational requirements and speed of convergence. Using
the simulation results as a means for our comparison, we propose the best algorithm
and implement that on a parallel architecture.

Systolic array architectures [5] [37] [43] [48] are deeply pipelined which provide a
high degree of parallelism. However, these architectures use a fixed-number of pro-
cessing elements (PEs) for a fixed-sized matrix. For example, the QR decomposition
of a 16 x 16 matrix requires a 16 x 16 array of PEs for systolic array implementation,
while the QR decomposition of a 30 x 30 matrix requires a 30 x 30 array of PEs.
Therefore, the systolic array architecture is suitable for computing the full eigenval-
ues and the corresponding eigenvectors of the 16 x 16 or the 30 x 30 system that it
was designed for.

However, in many digital signal processing applications, the number of eigenvalues
required for the partial solution as well as the size of the input matrix may vary.
These properties make the use of the systolic array inadequate. For example, in

adaptive beamforming, the number of the partial eigenvalues involved varies with the
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number of signals present. The input matrix size can vary depending on the particular
applications.

In our parallel architecture, the number of PEs does not depend on the size of the
input matrix and/or the number of eigenvalues required for the partial solution. For
example, it can be used to solve for the eigenvalues for a 64 x 64 matrix and also a
75 x 75 matrix using the same number of PEs (say 8) with high efficiency and high
throughput. Also, it can extract any number of the smallest (largest) eigenvalues and
the corresponding eigenvectors without having to change the number of PEs in the
processing array.

In the systolic array implementation, the PE receives input data by element,
computes a small number of floating-point operations, and sends out the results by
element. Therefore, the total number of operations in a PE may not be much larger
than the total number of input and output operations. Sometimes, it may be an 1/0-
bound system [26] [29] (i.e., the total number of operations is smaller than the total
number of input and output operations). One of the important aspects of utilizing
a high performance architecture effectively is to increase the ratio of floating-point
operations to data movements to balance the computations and the data movements.

Dongarra and Duff [10] show that currently the processing speed for modern com-
puter systems is increasing at a much higher rate than the speed of the data bus.
Therefore, it is important to improve the ratio of floating-point operations to data
movements to fully utilize the hardware. In our parallel architecture, we improve the
ratio by processing the data by block (multiple data elements). By partitioning the

input data into blocks, each PE processes a block of data, while reusing the data inter-
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nally as appropriate. The reuse of data reduces the total number of data movements,
therefore increasing the ratio of floating-point operations to data movements.

Data movements and interprocessor communications play an important role in
parallel architecture design [33]. The systolic implementation requires complicated
communication connections between PEs. However, in our architecture, the data
transfer between PEs is local and uni-directional. This makes the control of the
interconnection architecture simple and easy to implement.

We have simulated the architecture with the Erg programmable simulator [2] us-
ing the timing characteristics of the TMS320C40 digital signal processor [21]. The
simulation results consistently show that our parallel architecture provides high per-
formance, high efficiency, and almost linear speedup for many applications. Along
with these desirable results, the architecture is flexible and can easily be changed
to meet the demands of many different applications. The contents of the remaining
chapters of this dissertation are briefly described below.

Chapter 2 describes the enhanced DOA system. We first compare and analyze the
typical high resolution algorithms for DOA. Then, we propose a modified eigenvector
method (MEVM) in order to enhance the resolution of the system using the forward-
backward covariance matrix.

Chapter 3 shows the comparison of the typical partial eigenvalue solution algo-
rithms. We compared these partial eigenvalue solution algorithms based on the com-
putational requirements and speed of convergence. Using the simulation results for
comparison, we propose the best algorithm to implement on the block data parallel

architecture (BDPA).
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Chapter 4 presents the architectural features of the block data parallel architecture
(BDPA) and explains how these features make contributions to the implementation
for the digital signal processing applications.

Chapter 5 shows the implementation of the partial eigenvalue solution algorithm
on the BDPA. In this chapter, the modules used to compute the partial solution of
the eigenvalues and the corresponding eigenvectors are discussed, and the simulation
results are given.

Finally, chapter 6 gives a summary of the results. It also includes recommendations

for future research.
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2

A High Resolution Adaptive
Beamforming Algorithm

2.1 Problem Formulation

The problem of finding the direction-of-arrival (DOA) of multiple plain waves us-
ing sensor arrays, and the related problem of estimating the parameters of multi-
ple superimposed sinusoidal signals from noisy measurements have recently received
significant attention in the signal processing area. The delay-and-sum beamformer
was originally used to solve this problem. However, the conventional delay-and-sum
beamformer achieves relatively poor estimates for the direction-of-arrival because of
its wide bandwidth. Recently many algorithms, such as MVE [24], MUSIC [50], EVM
[25], SNLM [6], and SHIRE [32] have been proposed for improving the resolution of
an array beyond that which can be obtained with conventional beamforming.

In the high-resolution algorithms, we assume that K narrow-band signals with un-
known constant amplitudes and phases, and additive noise impinge on an array con-
sisting of M sensors. The transmission medium is assumed to be isotropic and nondis-
persive so that the radiation propagates in straight lines. The sources are assumed

to be in the far-field of the array. We assume that the K signals (1), s5(t), - - sk (t)
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are zero-mean, stationary, and ergodic complex Gaussian random processes. Let

X7 (t) = [@1(t), za(t), -+, apr(t)] (2.1)

be the observation vector at the array of sensors (the superscript T denotes transpose)

and
sT(t) = [s1(2), s2(t), -+ - sxc(2)] (2.2)
be the vector of source signals. Then the sampled wavefronts received at the M array

of sensors are linear combinations of the K incident wavefronts and noise.
x(t) = As(t) + n(t) (2.3)

where n(¢) is the additive noise vector. n(t) is assumed to be a zero-mean, stationary,
and complex ergodic white Gaussian random process. A is the M by K direction
matrix

A(0) = [a(01),a(02), -, a(0x)] (2.4)
where a(61),a(0;),-- -, a(0x) are the steering vectors [50]. The steering vector a(6;) is
completely determined by the sensor directivity patterns and the array geometry. In
this paper, for simplicity, discussions deal with single-dimensional parameter space,
e.g. azimuth-only direction finding of far-field point sources, since the basic concepts
are most easily visualized in such spaces. For example, if we assume narrow-band
signals, far field sources and a uniform linear array with x/2 element spacing, the
steering vectors have the following form
] 1

exp—iw sin 0

exp—i27rsim9 (25)

i exp—i(ﬂ/[.—l)wsino J
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A class of algorithms for estimating 6 in equation (2.1) is based on the eigen-
decomposition of the sample covariance matrix of x(t). Therefore, N( > M) snapshots

are collected in a large data matrix
X = [x1,X2,"*+, Xn] (2.6)

When the elements of the noise vector are assumed to be identically distributed and

uncorrelated both with each other and the signal, the covariance matrix X is defined

by

R = E{XX"} (2.7)

1
= —XX*
N

= A(0)P,A*(9) + 02R,,

where P, and o2 denote the signal and noise power, respectively, and * denotes
complex-conjugate transpose.

When the noise is uncorrelated, the noise only covariance matrix R, becomes the
M x M identity matrix I. This Hermitian matrix is then decomposed via a spectral

decomposition into

M
R=>) \vyv; (2.8)
i=1
where Ay 2 Ay > - A > Agqq = -+ = Ay = o2 are the real eigenvalues of R and
Vi,Va, -+, Var are the corresponding orthonormal eigenvectors. Also, K eigenvectors

(vi ¢ < K) related to the K maximum eigenvalues span the K dimensional signal
subspace. The other (M - K) eigenvectors {v; K+1 <14 < M} related to the (M - K)

minimum eigenvalues span a (M - K) dimensional noise subspace and are orthogonal to
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each of the K signal eigenvectors. Likewise, most of the eigen-decomposition methods
decompose the observed covariance matrix into two orthogonal spaces (the signal and
noise subspaces) and estimate the DOA’s from one of these spaces. The different

algorithms are now examined.

2.2 Comparison of Spectral Estimates

One of the important high resolution algorithms is the minimum variance estimator
(MVE) [18] [24] [56]. The idea of this algorithm is to minimize the total output
power subject to a constraint of unity undistored signal response from the desired
look direction. This algorithm may be stated as follows:

minimize . 5 (2.9)

subject to w™a(f) =1

where w is the complex weight vector for the adaptive beamformer and a(@) is the

steering vector. The spatial output spectrum for this algorithm is given by

POMyE = [a0)Ra(0)]” (2.10)
M \ -1
- [ a0

It can be seen from equation (2.10) that the MVE weights the eigenvectors v; by \l'
in both the signal and the noise subspaces.

The multiple signal characterization (MUSIC) algorithm was the first one to show
the benefits of using a subspace based approach. The MUSIC algorithm computes
a spatial spectrum from the noise subspace, and determines the DOA’s from the

dominant peaks in the spectrum. Let’s assume that @ is the direction-of-arrival.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



When 6 = 6, a(0) is in the signal subspace. Since the signal subspace is orthogonal

to the noise subspace (spanned by the eigenvectors v;, K +1 <7< M), when 6 = 6

M ~
o lat(@)vi*=0 (2.11)
=K +1
Therefore, if the estimating spectrum is formed as the inverse of equation (2.11), there
will be a peak corresponding to that direction.

The spectrum estimation by MUSIC [50], [51] is given by

M -1
P(0)Mmusic = [ > la*(O)v: Iz] (2.12)

i=K+1
As a result, MUSIC weights the eigenvectors corresponding to the noise eigenvalues
by unity while weighting the eigenvectors corresponding to the signal eigenvalues by
0 to deemphasize the eigenvectors corresponding to the signal eigenvalues.

The eigenvector method (EVM) [25] is similar to the MUSIC algorithm except
that the EVM emphasizes the eigenvectors corresponding to the noise eigenvalues by

weighting them by /\l' to combine the advantages from the MVE and MUSIC.

The estimated spectrum for EVM is

POEyM = [a0)R;'a(0)” (2.13)
Mo -1
= {Z & (O)vi |2]
i=I41 ]

where R;! is an estimate of the noise-only covariance matrix. Since the eigenvalues
have been sorted in decreasing order, the EVM weights the noise eigenvectors in
increasing order.

In the presence of spherical isotropic noise and system phase errors, the signal

eigenvectors are stable but can not be used to provide high resolution whereas the

11
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middle eigenvectors (corresponding to eigenvalues just below the signal) are stable
with potentially high resolution (less sensitive to the noise, i.e. these eigenvectors
have less perturbed DOA information than the remaining eigenvectors) [6]. The noise
eigenvectors, for ¢ near M, are unstable and sensitive to environmental perturbations.
Using this idea the stable nonlinear method (SNLM) [6] was introduced. The SNLM
uses different weights to emphasize the middle eigenvectors, while deemphasizing the
eigenvectorsfor: = 1,---, K (eigenvectors in the signal subspace) and the eigenvectors

for i near M (unstable eigenvectors in the noise subspace). The spectrum for SNLM

1s given by
PO)SNIM = [2"(O)RVA(R+o*R™)*R"2a(0)] ™ (2.14)
M )\1;—1 ) -1
- [ o]

Here k and o are parameters to be chosen by the user. The o has to be chosen to
be greater than the magnitude of the eigenvalues of the unstable eigenvectors, but
not greater than the magnitude of the smallest signal eigenvalue (Ag). Therefore,
the SNLM requires prior information on the distribution of the noise eigenvalues. By
increasing the value of k we increase the relative emphasis placed on the eigenvectors
with A; near « (the stable noise eigenvectors). Note that k = 0 gives the MVE, so
the SNLM is a generalization of the MVE.

The stable high resolution estimator (SHIRE) [32] adds the w*Rw term to pre-
serve the unperturbed signal subspace (which is essential for high resolution process-

ing) while constraining the sidelobes. The spectrum for SHIRE is

M -1
1
PO)SHIRE = |3 o | a*(0)v: | (2.15)
SHIRE = |2 Y730
12
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We can see that these algorithms have a common factor which is the square
magnitude of the product of the steering vector, a(f), and the eigenvector, v;. The
only difference in each algorithm is a weighting function for this magnitude. Table

2.1 shows the different weighting functions.

weighting function

MVE w; = L

a2

SNLM wi:m
MUSIC | w; =0fori=1,-+-,K, wi=1fori=K+1,--- .M
EVM |Jw;=0fori=1,---,K, w,—=ﬁforz'=]fx'-}—1,---,]\/1r

Table 2.1: A comparison of weighting functions

From Table 2.1, we can see that the MVE weights | a*(6)v; |* by {, SHIRE
k-1
weights this factor by X,+\+, SNLM weights it by (A"\-i-a2)*’ MUSIC weights the
1T M —i41 i
signal terms (¢ < K') by 0 (¢.e., same as if the K largest signal eigenvalues are infinity)
and the noise terms (K 4+ 1 < ¢ < M) by unity, and EVM weights the signal terms
by 0 and the noise terms by AL.

The estimating spectra has the following general form:

1

P(§) = ST O T (2.16)
1
- Zf‘ila*(ﬂ)wiviv;f‘a(ﬂ)

1
Y wi | a(0)vi [P+ S e wi | @t (0)v; |2

The first-term (for ¢ = 1,---, K') of equation (2.16) relates to the signal-subspace

and the second-term (for i = K +1,---, M) relates to the noise-subspace. The

13
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eigenvectors in the signal-subspace (signal-eigenvectors) cause the magnitude of the
spectrum to be large for the angles corresponding to the DOA, while the eigenvectors
in the noise-subspace (noise-eigenvectors) cause the magnitude of the spectrum to be
large for the angles not corresponding to the DOA. Therefore, the spectral estimate
which is obtained using the noise-eigenvectors or using the signal-eigenvectors has
better resolution and accuracy than the spectral estimate which is obtained using all
the eigenvectors of the covariance matrix. Combining the signal-eigenvectors and the
noise-eigenvectors degrades the performance because of the complementary relation-
ship between the two sets of the eigenvectors. Only one set of the eigenvectors is
needed for the Last estimate of the DOA. However, the signal-eigenvectors are easily
distorted by the noise [6]. Therefore, MUSIC and EVM use only the noise-eigenvectors
to obtain the direction-of-arrivals of the target sources.

The comparison of the above algorithms is plotted in Fig. 2.1. We used the
same conditions for each algorithm in the simulations. We used a linear array with
10 elements and uniform spacing of 0.5 wavelength between successive sensors. The
element spacing has to be smaller than or equal to x/2, but has to be large for small
beamwidth [12]. So, we choose the spacing to he /2. Two sources are located at
—2° and 3°. The noise is correlated and the input SNR for the array is 0 dB.

For the correlated noise case, we assumed that each sensor gets additive noise
which has N(0,1) magnitude and the phase of the noise is uniformly distributed in
[—6, 6], where N(0,1) represents the Gaussian normal distribution with mean 0 and
standard deviation 1. We set § = 3°. We collected one hundred snapshots of data

and used in each simulation run. The number of signals was assumed to be known

14
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or could be estimated [57] [59] for MUSIC and EVM. The distribution of the noise

eigenvalues was assumed to be known and k£ = 10 for SNLM.

1.2

-t

o
o)

Normalized Spectral Estimate
o [=]
> o

0.2

DOA (degree)

Figure 2.1: Performance comparison of algorithms
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(b) Position of eigenvector

Figure 2.2: Comparison of weights on the eigenvectors, (a) the number of signals is
assumed to be known, (b) the number of signals is unknown.
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From Fig. 2.1, EVM and MUSIC have better resolution and accuracy than the
other algorithms. This is because MUSIC and EVM do not combine the signal-
eigenvectors and the noise-eigenvectors. Only the noise-eigenvectors are used to esti-
mate the spectra for these algorithms. Fig. 2.2 shows the comparison of the weighting
on the eigenvectors. The number of signals is assumed to be known in Fig. 2.2 (a).
In this case, the weighting of the signal-eigenvectors (eigenvector 1 and 2) is zero.
Therefore, the estimated spectrum is obtained using only the noise-eigenvectors. The
spectrum estimated by these eigenvectors has better resolution and accuracy than the
other algorithms (see Fig. 2.1). Fig. 2.2 (b) shows that even though the weighting of
the signal-eigenvectors is small for the MVE, it has the worse resolution performance
(see Fig. 2.1, MVE). From now on, our discussion is limited to the algorithms which
use only the noise-eigenvectors because these algorithms have better resolution and
accuracy even though they require more computations to estimate the number of
signals.

What happens if the estimation of the number of the signals is incorrect? There
are two cases for the wrong estimation: over estimation and under estimation. For the
over estimation case, the performance degrading effect will not be a serious problem.
The estimated spectra for MUSIC and EVM are obtained using the weighted sum of
the noise-eigenvectors (1 for MUSIC and Ai, for EVM). When the estimated number of
signals is K+1 (assume that the number of signal is K), the resulting spectra will be
the weighted sum of the remaining M-K-1 noise-eigenvectors (when the estimate of the

number of signals is good, it will be the weighted sum of the M-K noise-eigenvectors).

Therefore, the spectral estimate is not degraded severely for over estimation of the

17
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number of signals.

For the under estimation case, the spectral estimate is severely degraded. This
is because the noise-eigenvectors are combined with the signal-eigenvectors. In this
case the weighting is an important factor [53]. In the EVM, each eigenvector is
weighted by the inverse of its eigenvalues \i' (i.e. the noise-eigenvector is weighted
by the inverse of the noise-eigenvalue and the signal-eigenvector is weighted by the
inverse of the signal-eigenvalue). The signal-eigenvalues have greater magnitude than
the noise-eigenvalues. Therefore, in the EVM algorithm, the contribution of the
signal-eigenvector is small relative to that for the noise-eigenvector. In the MUSIC
algorithm, the signal-eigenvectors and the noise-eigenvectors are equally weighted.
Therefore, the contribution of the signal-eigenvector is greater than with the EVM
method. Based upon this comparison of results, we choose to evaluate the effect of
using the forward-backward covariance matrix on the performance of the EVM.

Even if the estimation of the number of signals is correct, the estimated spectra for
MUSIC and EVM are degraded as the SNR becomes low. Fig. 2.3 shows the spectral
estimate of MUSIC and EVM when the SNR is minus 10 dB for our simulation when
all of the other parameters are the same.

From Fig. 2.3, the estimated spectra for MUSIC and EVM can not distinguish
the DOAs under these conditions. This is because the eigenvectors of the observed
covariance matrix R are severely degraded by the correlated noise. The details will be

further discussed in the next section. We introduce the weighted forward-backward

covariance matrix to reduce this effect.
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Figure 2.3: Performance comparison of algorithms, SNR = -10 dB

2.3 The Modified Eigenvector Method (MEVM)

As discussed in Section 2.2, the eigenvectors of the covariance matrix are divided
into two groups. The eigenvectors related to the largest K eigenvalues span the
signal-subspace. The remaining M-K eigenvectors related to the smallest M-K eigen-
values span the noise-subspace. In the ideal situation, the eigenvectors have the exact
DOA information and they span two disjoint subspaces (the signal-subspace and the
noise-subspace). However, the eigenvectors are often perturbed by correlated noise.
Therefore, the subspaces that are spanned by these eigenvectors are also perturbed.
Fig. 2.4 shows the relation between a noise-free eigenvector and a noisy eigenvector.

In Fig. 2.4, the eigenvector v becomes v’ because of the correlated noise. Note
that, the perturbed eigenvector v' is no longer in the noise-free subspace. Since

the basis of the subspace is the eigenvectors of the covariance matrix, the perturbed

19
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Figure 2.4: The relation between a noise-free eigenvector and a noisy eigenvector

eigenvectors span the other subspace (called perturbed subspace). In other words, the
perturbed noise-eigenvectors are in the perturbed noise-subspace and the spectrum
which is obtained using these eigenvectors does not have good resolution and accuracy.
Therefore, if we can develop a new subspace which is less perturbed by the same
correlated noise and use the eigenvectors in this subspace, then the spectrum will
have better resolution and accuracy.

Here, we introduce a weighted forward- backward covariance matrix. The weighted

forward-backward covariance matrix has the following form:
C=wR+(1-w)JRJ (2.17)

Where, w is a weighting coefficient and when w = 1, C becomes a conventional

20
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covariance matrix R. Therefore, the proposed method is a generalization of the

conventional covariance matrix method. Also, R is the complex cojugate of R and

0 0 -~ 0 1
0 -~ 0 1 0

J=11 : (2.18)
01 0 0
1 0 o0 0 |

Note that, J? = ].

For the same noise condition, the noise-subspace of the weighted forward-backward
covariance matrix is less perturbed. From Fig. 2.4, the angle between the perturbed
eigenvector v' and the noise-free eigenvector v represents the perturbation angle of
eigenvector v. Similarly, when the noise-subspace is in 2 dimensions, the perturbation
angle between two planes (One plane is spanned by the noise-free eigenvectors and
the other plane is spanned by the perturbed eigenvectors) is the angle between the
two planes. It is clear that a small angle represents a small perturbation of the noise-
subspace. We simulated the perturbation angle of the noise-subspace of the weighted
covariance matrix with various values of w to find the best one. The results are
plotted in Fig. 2.5.

In the simulations, the different correlated noises were used with the signal-to-noise
ratios (SNRs) equal to minus 10 dB, 0 dB, and 10dB. Fig. 2.5 shows the perturbation
angle between the noise-free noise-subspace and the perturbed noise-subspace when
w varies. From Fig. 2.5, it is shown that the smallest perturbation angle is obtained
when w = } regardless of the SNRs. Note that, the perturbation angle at w = 1 is
the same as the angle of the conventional covariance matrix. This perturbation an-

gle is always larger than that for the weighted forward-backward covariance matrix.

21
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Therefore, we can see that the perturbation (caused by the correlated noise) for the
weighted forward-backward covariance matrix is always less than that for the conven-
tional covariance matrix. We will use w = % with the forward-backward covariance
matrix for the rest of this paper because our simulations show its use results in the

smallest perturbation angle.

1-1 T T T T T 1 T T I

—— SNR=10dB
1r —-——- SNR=0dB
SNR =-10dB

o
)
T

Normalized Perturbation Angle (degree)
o
o

o
2]
T

0.4 3 ] 1 | L 1 ! L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weighting Coefficient (w)

Figure 2.5: The perturbation angle between the noise-free subspace and the noisy

subspace when w varies. The smallest perturbation angle is obtained at w = 1.
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We compared the noise-subspace perturbation angle for the forward-backward
covariance matrix (C') and for the conventional covariance matrix (R) with different
SNRs. In the simulations, we used a linear array with 10 elements and uniform
spacing of 0.5 wavelength between successive sensors. One source was located at 3°.
The noise was correlated and the SNRs were 5 dB, 0 dB, minus 5 dB, and minus
10 dB respectively. We collected one hundred snapshots of data and used in each
simulation run. We ran the simulation one hundred times for each SNR. Fig. 2.6
shows the noise-subspace perturbation angle for C and R with the SNR equal to 5
dB. Fig. 2.7 shows the comparison of the noise-subspace perturbation angle with the
SNR equal to 0 dB. Fig. 2.8 shows the comparison with the SNR equal to minus 5
dB. The comparison with the SNR equal to minus 10 dB is plotted in Fig. 2.9.

These figures show that the noise-subspace perturbation angle for the weighted
forward-backward covariance matrix is always less than that for the conventional
covariance matrix. They also show that as the SNR decreases, the perturbation angle
for the noise-subspace becomes large as expected. Table 2.2 shows the mean-values

of the perturbation angles for the noise-subspace.

SNR (dB) | Mean 1 (degrees) | Mean 2 (degrees)
S 0.5347 0.2983
0 1.7041 0.9278
-5 5.4483 2.9362
-10 18.2472 9.8402

Table 2.2: The comparison of the noise-subspace perturbation angle
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Figure 2.6: Comparison of the noise-subspace perturbation angle with SNR. equal to
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Figure 2.7: Comparison of the noise-subspace perturbation angle with SNR equal to
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The values, mean 1 and the mean 2, are the mean values of the perturbation angles
for the noise-subspace for the conventional covariance matrix ( R) and for the proposed
enhanced covariance matrix (C'), respectively. Table 2.2 shows that the noise-subspace
using the forward-backward covariance matrix has a smaller perturbation angle than
that for the noise-subspace using the conventional covariance matrix. Therefore, if we
use the eigenvectors in the noise-subspace which have the smaller perturbation angle,
then the spectral estimate obtained using these eigenvector will be more accurate and
have better resolution.

We propose a modified eigenvector method (MEVM) to enhance the resolution of
the spectral estimate for finding the direction-of-arrival of the sources. The MEVM
is similar to the eigenvector method (EVM) except it uses the forward-backward

covariance matrix (C) to enhance the estimates of the covariance matrix, where
1 =, .
C=S(R+JRJ) (2.19)

Therefore, the spectral estimate of the modified eigenvector method (MEVM) is

M

PO)MEVM = [ > %Ia*(o)vz’ IQ} (2.20)

i=K+1 7

where A;s and v;s are the eigenvalues and the corresponding eigenvectors of the
forward-backward covariance matrix C.

We simulated the MEVM using matlab to compare it with the performance of
the conventional EVM. Fig. 2.10 and Fig. 2.11 show the comparison of the spectral
estimates for MEVM and for the conventional EVM as the SNR decreases. In the
simulations, we used a linear array with 10 elements. Two sources were located at

—2° and 3°. The noise was correlated and the SNR equaled to 0 dB and minus 5 dB.
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Figure 2.10: Comparison of the spectral estimates with SNR equal to 0 dB. The two
sources are resolved well.
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Figure 2.11: Comparison of the spectral estimates with SNR equal to - 5 dB. The
two sources are not resolved as the SNR decreases to - 5 dB.
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We collected one hundred snapshots of data and used them in the simulation runs.

Fig. 2.10 shows that the DOA for the two sources is resolved well for both methods
when the SNR was 0 dB. As the SNR decreases to -5 dB (see Fig. 2.11), the spectral
estimate (EVM) obtained using the conventional covariance matrix is distorted and
can not be used to distinguish the DOA of the two sources while the spectral esti-
mate (MEVM) obtained using the forward-backward covariance matrix can still be
used to distinguish the DOAs. This is because the eigenvectors used in MEVM are
less distorted than the eigenvectors used in EVM under the same noise conditions.
Therefore, it is shown that the spectral estimates for MEVM has better resolution
and accuracy than the spectral estimates for EVM as the SNR decreases.

We performed other simulations to show the effect when the two sources are close
to each other. We used the same linear array with 10 elements. The noise was
correlated and the SNR was set to 0 dB. We collected one hundred snapshots of data
and used them in the simulation runs. Fig. 2.12 shows the estimated spectra when
two sources are at —2° and 2°. The estimated spectra are plotted in Fig. 2.13 when
two sources are closer to each other {—2° and 1.5°).

Fig. 2.10 shows that the DOA for the two sources is resolved well for both methods
when two sources were located at —2° and 3°. As the two sources were moved closer
to each other (—2° and 2°, see Fig. 2.12), the spectral estimates for EVM began to
converge while the spectral estimate for MEVM still can be used to detect the two
sources. As the two sources were more closer to each other (—2° and 1.5°, see Iig.
2.13), the spectral estimate for EVM converged and could not distinguish the DOA

of the two sources while the spectral estimate for MEVM still can be used to detect
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Figure 2.13: Comparison of the spectral estimates with two sources are at —2° and
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the DOA for the two sources. Therefore, MEVM can still be used to distinguish the
DOAs even though the two sources are close to each other.

We have shown with the simulation results that the spectral estimate obtained
using the noise-eigenvectors for MEVM has better performance than the spectral
estimate obtained using the noise-eigenvectors for the conventional EVM. The MEVM
is less sensitive to correlated noise and small differences in DOA (i.e., the spectral
estimate for MEVM has better resolution and accuracy than the spectral estimate
for EVM under the same noise condition and/or when two sources are close to each
other).

We performed the simulations to compare the resolution for the conventional
EVM and MEVM. Fig. 2.14 and Fig. 2.15 show the comparison of two methods
for several simulations. We used a linear array with 10 elements. Two sources were
located at —2° and 4°. The noise was correlated and the SNR was set to minus 6 dB.
We collected one hundred snapshots of data and used them in each simulation run.
Estimated spectra from 20 runs using the conventional EVM are plotted in Fig. 2.14.
This figure shows that the two sources are not resolved. The results using MEVM
are shown in Fig. 2.15, wherein the the two sources are resolved. The simulation
results show that the MEVM consistently has better resolution and accuracy than
the conventional EVM.

So far, we have presented the modified eigenvector method (MEVM) to enhance
the resolution of spectral estimate for finding the direction-of-arrival of the sources.
We evaluated the performance of MEVM and compared the results with the con-

ventional EVM. The comparisons show that the spectral estimate obtained using
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Figure 2.15: The estimated spectra for MEVM. Two sources are resolved well.
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MEVM is less distorted than the spectral estimate obtained using the conventional
EVM under the same noise conditions. Furthermore, MEVM has better resolution
and accuracy than the conventional EVM when the sources are close to each other.

We now consider how to implement this algorithm for real-time processing.

2.4 Implementing the MEVM

Section 2.3 gave the enhanced algorithm (MEVM), which uses the forward-backward

covariance matrix for the direction-of-arrival system. The MEVM has 4 steps.

1. Form the data matrix X where

To(k) wag(k—1) -+ zo(k—N+1
X(k) = “f ) : ) | o : ) (2.21)
em(k) zm(k—1) --- (k- N+1)
2. Compute the forward-backward covariance matrix C where
1
R(k) = NX(k)X*(k.) (2.22)
1 R
Clk) = §(R(k)+JR(k)J)
0 - 0 01
0 - 0 10
J = . S
1 0 ---00
3. Find the eigenvalues, A;, and the corresponding eigenvectors, v;, of C.
4. Find the peaks of the function 1/P(#) where
M 1 .
PO) = 3 1 1Vi(0)] (2:23)
j=K+1
AJ . .
‘/"](0) — Z,Ujkexp—ursm(O)(k—l)
k=1
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Figure 2.16: Conceptual Design of the Overall System

We are interested in developing a high performance system for implementing the
MEVM. Fig. 2.16 shows the pipeline of modules required to implement the MEVM.
Conceptually there are four modules in the system. The first is the data sampling
and buffering module to form the data matrix. The second is the forward-backward
covariance matrix module to compute the forward-backward covariance matrix from
the data matrix. The third is the eigen-decomposition module to compute the re-
quired eigenvalues and the corresponding eigenvectors of the covariance matrix. The
fourth is the spectral estimation module which computes the inverse of the weighted
sum of the eigenvectors obtained from module 3.

The floating-point operations required in the DSBM, the FBCM, and the SEM are
relatively small when compared to the number of floating-point operations required

for the EDM. The EDM requires intensive computations to compute the eigenvalues
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and the corresponding eigenvectors of the forward-backward covariance matrix. This
is because computing eigenvalues and the corresponding eigenvectors requires lots
of matrix operations (usually, O(M?) floating-point operations are required) even
though we want only the partial solution of the eigen-decomposition problem. This
makes it difficult to implement the whole system in real-time. We investigate the use

of the block data parallel architecture (BDPA) [58] to avoid this bottleneck.
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3

The Partial Eigenvalue Solution
Algorithm

We have shown in chapter 2 that the spectral estimates (EVM) obtained using
the noise-eigenvectors has better resolution and accuracy than the spectral estimate
(MVE) obtained using all the eigenvectors of the covariance matrix. We futher ana-
lyze this problem in this chapter.

The covariance matrix presented in chapter 2 can be represented by its eigenvalues

and the corresponding eigenvectors.
M

C = Zx\ivivf (3.1)
=1

K M
= Z/\,-viv;‘—k Z /\,‘V,‘V?
=1

i=K+1
The eigenvalues of the covariance matrix represent the power of the signals. For ex-
ample, in adaptive beamforming, signal-eigenvalues represent the power of the input
signal plus the input noise and the noise-eigenvalues represent the power of the input
noise. Therefore, when K signals are input to the array, the K largest eigenvalues
(signal-eigenvalues) are always larger than the remaining M-K eigenvalues (noise-
eigenvalues). The K eigenvectors (signal-eigenvectors) corresponding to the K largest

eigenvalues have information related to the DOA of the sources, while the remaining
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M-K eigenvectors (noise-eigenvectors), corresponding to the M-K smallest eigenval-
ues, have information related to the absence of the sources as discussed in chapter
2. Therefore, the spectral estimate obtained using the noise-eigenvectors or using
the signal-eigenvectors has better resolution and accuracy than the spectral estimate
which is obtained using all the eigenvectors of the covariance matrix. This is because
the combination of the signal-eigenvectors and the noise-eigenvectors degrades the
performance because of the complementary relationship between the two sets of the
eigenvectors. Only one set of the eigenvectors is needed for the best estimate of the
DOA.

Computing the partial solution of the eigenvalue decomposition problem is a nec-
essary part of the high-resolution algorithm for an adaptive heamforming system.
The partial eigenvalue solution algorithms are also used for digital signal processing
applications, such as array signal processing [35], system identification [8] [38], image
processing [44], spectrum estimation [14], filter design [36) , to name just a few. Al-
though these algorithms that use eigenvalue decomposition can usually achieve much
better performance than traditional least squares methods, their heavy computational
load often makes them difficult to implement in real-time. Since these algorithms re-
quire computation of only a few of the eigenvalues and the corresponding eigenvectors
from a large space, it may not be necessary to compute all of the eigenvalues and the
corresponding eigenvectors. Several methods exist for the partial solution of the eigen-
value problem. QR-inverse iteration method [3], simultaneous iteration method [22]
[23] [49], and subspace iteration method [42] [46] are frequently used. We compared

these partial eigenvalue solution algorithms based on computational requirements and
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speed of convergence.
The QR-inverse iteration method is a very efficient algorithm to find all of the

eigenvalues for a matrix. The procedures are shown in Table 3.1. In the case where C

Equation Notes
Cr = QiR — orl QR iterations with origin shift
Cry1 = QICLQr + o1l k=1,2--.
T FHD _ (R) o :
(C=-XNDy; " 7 =y; Inverse iterations
E=1,2,3. i=1,2-- K

Table 3.1: QR-inverse iteration method

1s symmetric, each of the C’s will also be symmetric and the sequence will converge to
a diagonal matrix. After finding the eigenvalues using the QR iterations, the partial
eigenvectors (say K) can be obtained using the inverse iteration method. The inverse
iteration method requires only a few iterations (2 or 3). However, the QR iterations
require M-1 Householder’s transformations and a similarity transformation at each
iteration and it is typically slow to converge. (Actually, the rate of convergence for
Ak depends on the ratio ﬁ{—l [17]). The number of iterations required to obtain the
K partial eigenvalues from an M x M matrix will be explained later.

The simultaneous iteration method can be used to simultaneously find multiple
eigenvalues and the corresponding eigenvectors. The procedure is shown in Table 3.2.
In this Table, C' is the forward-backward covariance matrix (M x M) to be solved
and D is an M x K initial trial matrix, where K is the number of eigenvalues to be
solved. It requires four matrix-matrix multiplications, two forward-substitutions, one

back-substitution, one Cholesky decompositions, and one full eigenvalue solution for
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U=CD matrix-matrix multiplication
G=D'D matrix-matrix multiplication
H=D'U matrix-matrix multiplication
G=LL" Cholesky decomposition
LZ =8B forward-substitution
LH =277 forward-substitution
HY; = Y,A, | full eigenvalue solution (K x K)
LY =Y, back-substitution
D=UY matrix-matrix multiplication
Tolerance test

Table 3.2: Simultaneous iteration method

a K x K matrix at each iteration.
Table 3.3 shows the procedure for subspace iteration using the Rayleigh-Ritz

method. It requires four matrix-matrix multiplications, one QR decomposition, and

U=CD matrix-matrix multiplication

U=0QR QR decomposition
H=Q7(CQ) | 2 matrix-matrix multiplications
H =Y,A,Y! | full eigenvalue solution (K x K)
D™ — QY, | matrix-matrix multiplication
Tolerance test

Table 3.3: Subspace iteration with Rayleigh-Ritz method

one full eigenvalue solution for a K x K matrix at each iteration.

We used computer simulations to evaluate the partial eigenvalue solution algo-
rithms for the direction of arrival problem. We used matrices formed from simulated
data consisting of four sinusoidal signals plus Gaussian noise. We used an equally

spaced linear array with 64 elements and two hundred snapshots of data for each sim-
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ulation. We tried to find four signal eigenvalues and the corresponding eigenvectors
from a 64 x 64 matrix.

We used arbitrary orthonormal vectors for the starting vectors. The initial trial
matrix D was

D=[d; d; dy d (3.2)

where d; is a 64 x 1 zero vector with the ith position equal to 1. In the simulations, the
numerical stabilities are related to the number of iterations. T herefore, the estimated
eigenvalues and the corresponding eigenvectors at each iteration are closer to the
real eigenvalues and the corresponding eigenvectors as the number of iterations is
increased. We set the allowable tolerance to 10~*. The comparison of the convergence

for each algorithm is given in Table 3.4.

mean | std | min | max

OR iterations with origin shift || 47.3 [23.609 | 15 | 105
Simultaneous iteration 5.68 [0.4899 | 5 7
Subspace iteration 4.68 | 0.4889 | 4 6

Table 3.4: Convergence comparison

These simulation results show that the subspace iteration with Rayleigh-Ritz
method converges faster than the QR iteration method or the simultaneous iteration
method. It also requires fewer operations (per iteration) than the other methods.
Therefore, the subspace iteration with Rayleigh-Ritz method is the best choice for a
partial eigenvalue solution algorithm when we consider the computational tasks and

the rate of convergence.
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The above algorithms are useful to find a few dominant eigenvalues and the cor-
responding eigenvectors. However, most of the signal processing algorithms require
a few of the smallest eigenvalues and the corresponding eigenvectors. By modifying
these algorithms, we can obtain the few smallest eigenvalues and the corresponding
eigenvectors that are required for most of the signal processing algorithms.

The symmetric matrix C and the inverse of C, C~?, can be represented by its

eigenvalues and corresponding eigenvectors.

M

C = Z/\iViV;T (33)
i=1
M 1

ct = Z;viv?

=1 "

2

When Ay > Ay > -+ > Ay, Aj is a dominant eigenvalue. vy

is a dominant eigenvalue
for C~1. Therefore, if we compute a dominant eigenvalue and the corresponding
eigenvector of C™', then that is the smallest eigenvalue and corresponding eigen-
vector of C. However, we have to compute C~! to obtain the smallest eigenvalue
and the corresponding eigenvector. This requires approximately M3 multiplications.

Moreover, the system may be defective if C is near singular. The alternate way to

solve this problem is to solve CU = D using back-substitution instead of solving

C=R QR decomposition
RU=Q'D back-substitution
U =R, QR decomposition

H=03(CQ,) 2 matrix-matrix multiplications

H = P,A,P? full eigenvalue solution (K x K)
hline D¢+ = Q,P, | matrix-matrix multiplication

Tolerance test

Table 3.5: Partial eigenvalue solution algorithm
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U = C'D. Therefore, if we replace the first step of Table 3.1, Table 3.2, and Ta-
ble 3.3 by CU = D then we obtain the smallest eigenvalues and the corresponding
eigenvectors.

The resulting subspace iteration with Rayleigh-Ritz method is shown in Table
3.5. In the Table, C is an M x M matrix to be solved and D is an initial trial

matrix (M x K), where K is a number of partial eigenvalues and the corresponding

eigenvectors to be solved.
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4

Block Data Parallel Architecture

4.1 The Advantages of the BDPA

Computing eigenvalues and the corresponding eigenvectors of a matrix is very com-
putationally intensive because of the required matrix operations. Matrix operations
also find important applications in many digital signal processing areas such as array
signal processing, system identification, image processing, spectrum estimation, data
compression, and adaptive filtering. However, these operations require tremendous
computations and this makes them difficult to implement in real-time.

Many parallel computer structures [52] [54] have been developed to solve this
problem. Some of the traditional parallel computer structures such as bus-organized
multiprocessor systems and SIMD (Single Instruction Multiple Data) array processor
systems [13] are reliable and easy to extend. However, the processors’ contention for
shared resources (buses, memory) limits the number of processors which can be effec-
tively used. SIMD array processors have the potential to provide the computational
power. However, as the number of processors becomes large, the interconnection
network often becomes cost-prohibitive. For some applications it is also difficult to

balance the input/output bandwidth with the demands for processing capability.
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Normally, signal processing tasks and matrix operations possess a large amount
of inherent parallelism. Many parallel algorithms and parallel structures have been
developed to exploit this parallelism [15]. However, most parallel algorithms are opti-
mized for implementation on general purpose computers. General purpose computers
can not achieve the high system throughput required for real-time processing because
of limitations due to supervision overhead and data communication problems.

Most parallel multiprocessor system such as systolic arrays and hypercube multi-
processor systems have a synchronous structure. A synchronous system achieves its
parallelism by synchronous clock-step operations [20]. This implies that all operands
have to be ready before any processor can start its designated operation. This strictly
synchronous operation imposes a severe timing restriction on the system design and
causes implementation difficulties such as the clock skew problem for large scale sys-
tems (i.e. each processing element in the array may not receive the clock signal at
the same time) [29] {31].

A wave-front array [28] [30] replaces the requirement for correct timing by a re-
quirement for a correct sequence of operations to overcome the globally synchronous
timing problem. However, if the handshaking for the wave-front array is done at the
word level, then the resources required to implement the handshaking protocol limit
the overall system efficiency and throughput.

Algorithms designed for systolic arrays and wave-front arrays use an algorithm
partitioning strategy. In an algorithm partitioning strategy, each processor imple-
ments a part of the algorithm and then passes its intermediate results and possible

the input data to other processors in the array. This strategy can be effectively used
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to distribute the computational load in a processor array. However, the use of this
strategy may lead to unnecessary data movement among processing elements. More-
over, only the edge processors of a systolic array or a wave-front array have access to
input or output devices. Processing results go through processor by processor in or-
der to reach the one which can interface to the output device. This unnecessary data
movement may increase system management and data communication overhead, and
may increase hardware complexity. It may also increase the data dependency among
the processing elements.

In a data partitioning strategy [1] [58], each processor receives a different portion
of the data and attempts to complete all the necessary computations for its assigned
data partition. When it is necessary to communicate with other processors, this
communication should be minimized. Therefore, the data partitioning strategy can
be effectively used with many digital signal processing algorithms.

A block data parallel architecture (BDPA) [58] effectively uses both the data
partitioning strategy and algorithm partitioning strategy. By effectively using both
strategies, the BDPA achieves high system throughput and high system efficiency.

The BDPA uses a globally asynchronous and locally synchronous clock distri-
bution scheme. Therefore, the BDPA uses FIFQ buffers to relax synchronization
requirements between the processing elements, between the input module and the
processing array, and the processing array and the output module. Once a processing
element detects that input data is available, it does not require any further checking
for the presence of data until a block of input data has been transferred. This simple

block data transfer protocol together with the use of the FIFO buffers essentially
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eliminates the overhead associated with asynchronous data transfer.

In the systolic array implementation, each processing element (PE) in the array is
connected to nearest neighbor PEs. In the array, processing elements work together
using pipelining. Through pipelining, data enters the array through designated pe-
riphery processing elements and is piped according to a global clock through PEs
one clock at a time. On each clock cycle a PE receives its input, performs its des-
ignated computation, and produces output to be used as input to neighbor PEs on
the next clock cycle. Qutput from the array is received through designated periphery
processing elements. However, the data transfer between PEs is performed element
by element. The PEs receives input and produces output with a small number of
operations. Therefore, the total number of operations in a PE is not much larger
than the total number of input and output operations. Sometimes, this may result in
an I/0-bound system [26] [29]. One of the important aspects of utilizing a high per-
formance architecture effectively is to increase the ratio of floating-point operations
to data movements to balance the computations and the data movements.

Currently the processing speed for processors is increasing at a much higher rate
than the speed of the data bus. Therefore, it is important to improve the ratio of
floating-point operations to data movements to fully utilize the hardware. In our
parallel architecture, we improve this ratio by processing the data by block (multiple
data elements). By partitioning the input data into blocks, each PE processes a
block of data while reusing the data internally. The reuse of data reduces the total
data movements, therefore increasing the ratio of floating-point operations to data

movements.
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Systolic array architectures [5] [37] [43] [48] offers a high degree of parallelism.
These architectures use a fixed number of processing elements (PEs) to solve a fixed-
sized problem. For example, the QR decomposition of a 16 x 16 matrix requires
a 16 x 16 triangular array of PEs for systolic array implementation, while the QR
decomposition of a 30 x 30 matrix requires a 30 x 30 triangular array of PEs. Therefore,
the systolic array architecture is suitable for computing the full eigenvalues and the
corresponding eigenvectors of the 16 x 16 or 30 x 30 system that it was designed for.

However, in many digital signal processing applications, the number of eigenval-
ues required for the partial solution as well as the size of the input matrix may vary.
These properties make use of the systolic array infeasible. For example, in adaptive
beamforming, the number of the partial eigenvalues involved varies with the num-
ber of signals present. The input matrix size can vary depending on the particular
application.

In the BDPA, the different ranges of problem sizes can be mapped onto the array
through a wrap-around interconnection of PEs. Therefore, the number of PEs does
not depend on the size of the input matrix and/or the number of partial eigenvalues
to be solved. For example, it can solve a problem for not only a 64 x 64 matrix but
also for a 75 x 75 matrix using the same number of PEs (say 8) with high efficiency
and throughput. Also, it can extract any number of the smallest (largest) eigenvalues
and the corresponding eigenvectors without having to change the number of PEs in

the processing array. The comparison between a systolic array, a wave-front array,

and a BDPA shown in Table 4.1.
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systolic array | wave-front array | BDPA
strategy algo. parti. algo. parti. data/algo. parti.
clocking synch. asynch./synch. | asynch./synch.
data-dependency intensive relaxed relaxed
comm. between PEs intensive intensive relaxed
control scheme difficult simple simple
computations/data movement | low low high
granularity low low high
processing element utilization | high low high

Table 4.1: The comparison of a systolic array, a wave-front array, and a BDPA

4.2 BDPA Configuration

As previously mentioned, the BDPA is based upon the use of block data processing
and the block data flow paradigm [1] [58]. A BDPA system consists of three modules
as shown in Fig. 4.1. The input device supplies a serial stream of data to the input
module (IM) which groups the data into blocks to be sent to the processor array
(PA). Each processing element in the PA works with its assigned block, sending
intermediate values to the next processing element in the PA and sending outputs
grouped in blocks to the output module (OM). The OM assembles these blocks into

a serial output stream for the output device.

4.2.1 Input Module

The input module (IM) serves as a buffer between the host system (or external input
device) and the processor array. It includes two or more FIFO buffers and it converts
the input data stream into blocks of data. In designing the IM, we assumed that the

input data blocks will be formed sequentially. Therefore, while FIFO; receives the
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‘ INPUT DEVICE )

INPUT MODULE

Y

PROCESSOR ARRAY

Y

OUTPUT MODULE

|
Y

(OUTPUT DEVICE ’

Figure 4.1: Block Diagram for the BDPA

data from the input device, FIFO, sends a block of data to the PA using one of the
input data buses (In_Bus_2) and vice versus (the data distribution from the input
data buses will be explained in Section 4.2.2). So, the IM continuously provides the
input data to the PA. The block diagram of the IM with 2 FIFO buffers is shown in

Fig. 4.2.
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Figure 4.2: Input Module with 2 FIFO buffers
4.2.2 Processor Array

The processor array (PA) has a sufficient number of processing elements (PEs) to
provide the necessary computational power for real-time signal processing or fast
matrix operations. The block diagram for the PA is shown in Fig. 4.3.

The data communications between PEs are local and uni-directional by design.
This permits the use of FIFO buffers for the data communications. The FIFO buffers
also provide asynchronous data communication capability which in turn relaxes the

requirement for strict timing between PEs. This is an important advantage as we
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Figure 4.3: Block Diagram for the Processor Array

increase the number of PEs in the BDPA. Each PE has a separate input channel and
a separate output channel. The PEs are divided into an odd number PE group and an
even number PE group. Each PE group is connected to input FIFO buffers and output
FIFO buffers through its assigned data buses. The data blocks are sequentially routed
to the PEs. Thus, each input bus must be ready to handle every other data block.
This permits time for the IM to route the previous data block to the appropriate
PE. Also, the two input data buses and two output buses alleviate bus contention
problems. This is true because the data communications in this architecture are
regular, predictable, and sequential. This is a significant advantage for implementing

large scale systems.
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In the architecture, the input data is partitioned into blocks and each block of
data is assigned to a PE through its assigned data bus (i.e., block 1 is assigned in
PE,, block 2 is assigned in PE; and so on). A block of data could be a column,
a row, or a submatrix of a large matrix. Each processing element (PE;) receives
block ¢ from the IM (z.e., NORTH direction) and receives intermediate results from
the previous processor (PE;_;, EAST direction). PE; performs the computations
required for the block, sends the intermediate results required to the next PE (PE;41,
WEST direction), and sends the block of results to output module (OM, SOUTH
direction).

Once data first becomes available for a given PE, then data is alway available until
its assigned block of data has been exhausted. Each PE which currently has data
can perform computations at its maximum possible rate. This means that speedup
is essentially linear for the BDPA.

After each PE finishes its computational tasks it receives the next block for its
new assignment. This makes the system flexible with regard to varying the input
matrix size. This is true because each PE receives the new data block as soon as it
completes the computations for the previous block. For example, when the QRM,
processes 61 x 61 matrices using four PEs, the last column of the first 61 x 61 matrix
(say C) is assigned to the first PE and the first column of the second 61 x 61 matrix
(say Cb) is assigned to the second PE, etc. Therefore, the number of PEs in the
BDPA does not have to depend on the size of the input matrix. This is a significant
advantage for implementing the system when the size of the input matrix varies

with time. For example, the sizes of matrices U and S for the partial eigenvalue
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decomposition problem depend on the number of eigenvalues to be solved and the
number of eigenvalues to be solved varies with the number of input signals which

varies with time. More details of the architectures will be discussed in chapter 5.

4.2.3 Output Module

Fig. 4.4 shows an example of the block diagram of an Output Module (OM). It collects

processing results from each of the processing elements and converts the blocks of data

Input from Input from
Out_Bus_1 Out_Bus_2

full_flag3 I

..<
Control *
Unit full_flagd
FIFO; FIFO4
buf_control % *
. Mux
—pp» control signal +

e data OUTPUT

Figure 4.4: Output Module
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into a synchronized output data stream for the output device.
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5

A High Performance Parallel
Architecture

5.1 The System Building Block

Our simulations show that the subspace iteration with Rayleigh-Ritz method has fast
convergence and requires less computational time for the partial eigenvalue solution
problem as compared to the other algorithms in our study. Therefore, we designed a
parallel architecture to implement the subspace iteration with Rayleigh-Ritz method.

Fig. 5.1 shows the pipeline of modules required to implement the subspace itera-
tion with Rayleigh-Ritz method. Conceptually there are n+2 modules in the proposed
pipelined system, where n is the number of iterations required to compute K partial
eigenvalues and the corresponding eigenvectors. The first is the input module (IM).
The IM (see Fig. 4.2) converts the input data stream into blocks of data and contin-
uously supports the block of input data to PEs in the iteration module (ITM). Each
ITM performs the computations required to complete an iteration for the subspace
iteration method. The OM (see Fig. 4.4) collects processing results from the PEs
in the last I'TM and converts the blocks of data into an output data stream in the

appropriate format for the output device.
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—» IM [P ITM, ITM, /%1 OM —»

Figure 5.1: Pipelined subspace iteration algorithm flow

5.2 Iteration Module

The iteration module (ITM) performs the computations required to complete an
iteration of the subspace iteration algorithm. An iteration of the subspace iteration

algorithm proceeds by the following steps :

1. Compute the QR decomposition of E to find R; and update D.

E = Q1R1 (51)
QfE = R
QD = B

2. Solve for U using back-substitution.
U =18 (5.2)

3. Compute the QR decomposition of U and find Q.

U= QQRQ (53)
4, Multiply )2 by FE.

T = EQ, (5.4)
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5. Multiply T by Q7T.

H=QIT (5.5)
6. Find the full eigenvalue solution of H.
H=YAYT (5.6)
7. Find the new trial matrix D by multipling Y; by Q..
D = Q,Y; (5.7)

Our parallel architecture uses the BDPA in each submodule to implement one
step of the algorithm. Several such submodules cooperate in a pipelined manner to
implement a complete iteration of the subspace iteration algorithm. Fig. 5.2 shows
the pipeline of submodules required to compute an iteration of the partial eigenvalue

solution algorithm.

SM] SM2 SM7

Figure 5.2: Pipelined submodules to solve the partial eigenvalue solution algorithm

An iteration of the subspace iteration algorithm proceeds by 7 steps. Therefore,
there are 7 submodules (SMs) in the proposed pipelined parallel architecture imple-

mentation. Fach submodule uses the BDPA to solve one step of the subspace iteration
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RM

Figure 5.3: Register Module

algorithm. However, the IM and the OM are repeatly used in the implementation.
We combine the IM and the OM to form a register module (RM) as shown in Fig.
5.3. The RM continuously receives data from the processing elements in the previous
submodule and provides the data to the next submodule. Therefore, the RM serves
as a buffer between submodules. Fig. 5.4 shows a block diagram for the RM. From
Fig. 5.4, while Buf; sends data to the processing elements in the next module, Buf,
receives data from the processing elements in the previous submodule or vice versus.
With this configuration, the RM can simultaneously receive data from the previous
submodule while sending data to the next submodule.

The iteration modules for the partial eigenvalue solution algorithm are shown in
I'ig. 5.5. Seven submodules are required to compute an iteration of the algorithm.

The first is the QR decomposition modulel (QRM;) which computes an upper
triangular matrix (R;) of E using Given’s rotations. The trial matrix D is also
updated during the process. The second is a back-substitution module (BSM) which

solves for U where RiU = Q¥ D. The third is the QR decomposition module2 (QRM,)
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Figure 5.4: Block Diagram for the Register Module
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Figure 5.5: Iteration modules for the partial eigenvalue solution algorithm
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which computes @Q; from U using the modified Gram-Schmidts method. The fourth
Is a matrix-matrix multiplication modulel (MM;) which computes T by multipling
Q2 by E. The fifth is matrix-matrix multiplication Module2 (MM;) which computes
the K x K matrix H. The sixth is an eigenvalue solution module (ESM) which
computes the eigenvalues and the corresponding eigenvectors of the K x K matrix
H. The seventh is the matrix-matrix computation Module3 (MMs) which computes
the new trial matrix D. These processes are repeated in each ITM until it satisfies
the convergence conditions.

In the architecture, the number of ITMs is related to the number of iterations
required to obtain convergence. We simulated the algorithm to find the required
number of ITMs when we extracted the four largest eigenvalues and the corresponding
eigenvectors from a 64 x 64 matrix. In the simulations, we used 64 x 64 matrices
formed from simulated data consisting of four sinusoidal signals plus Gaussian noise
with signal-to-noise ratio (SNR) equal to 0 dB. We used one hundred simulation runs
for the computations. Table 5.1 shows that 33 of the one hundred runs converge after

four iterations. In the same manner, Table 5.1 shows that 66 of the one hundred

number of iterations | 4 | 5
simulation runs 33166 (1

Table 5.1: Number of iterations required to compute the four largest eigenvalues and
the corresponding eigenvectors from 64 x 64 matrices

runs converge after five iterations, and 1 of the one hundred runs converges after six

iterations. The number of iterations are related to the number of ITMs. Therefore,
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four iterations would have required four ITMs, etc. Based on these results, we consider
six ITMs operating in a pipelined fashion to be adequate for this problem. In rare
instances, if the convergence criteria is not satisfied within 6 iterations, the last ITM
will be used to test for the convergence and then continue the iterations. Since the last
ITM is the only one affected by this modified procedure, the other modules can stop
processing and hold their current data until the last ITM has satisfied the convergence

criteria. Then, the system can proceed with normal operation.

5.3 QR Decomposition Modulel

The first step of the partial eigenvalue solution algorithm is the computation of the
QR decomposition [16] [41] of a covariance matrix E to solve the linear equations

EU = D. This module performs the QR decomposition of E to find R and B.

EU = D (5.8)
QTEU = Q7D
RU = B

Where, £ = QR and B = QT D.
We used Given’s rotation for the QR decomposition. The purpose of the Given’s
rotation is to annihilate the subdiagonal elements of matrix £ and reduce it to upper

triangular form. For example, if we have a matrix I,

€11 €12 €13 €14
€21 C22 €23 €24 (5'9)
€31 €32 €33 €34
€41 €42 €43 €44

We need to zero out ess, €1, €41, €32, €42, €43 in order to obtain the upper triangular

matrix. We use row 1 as the reference row and form an orthogonal matrix Q2 to
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annihilate an element ey;. The orthogonal matrix Qo is

Ca1 S21 0 0
Q - —~3S91 €21 00 5.10
2= 9 9 10 (5.10)
0 0 01
where
€11
€1 = (5.11)
Ve ten
€21
S21 = ——2 5
Ve + ey
Multiplying E by Q2 gives
¢ s;1 00 €11 €12 €13 €14 €11 €12 €13 €y
QmE“ —s31 ¢ 0 0 €21 €22 €23 €24 | 0 e éa3 € (5 19)
0 0 10 €31 €32 €33 €34 €31 €32 €33 €34
0 0 01 €11 €42 €43 Ca4 €41 €42 €43 €44
As a result of this computation, the elements in row 1 are updated as follows:
€1 = caenn +S21€n (5.13)
€12 = Ca€1 + S21€22
€13 = cCa€13 + S21€03
€14 = Cz1€14 + S21€24
The updated elements in row 2 are
€1 = —szmen +canen =0 (5.14)
€22 = —S21€12 + C1€22
€23 = —Sg1€13 + C21€23
€4 = —S21€14+ Co1€04
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In a similar way, the subdiagonal element, 3y, is annihilated. We use the orthogonal

matrix (J3; to annihilate es;.

cai 0 s3 0
0 1 0 0
Qa1 = —ss 0 s (5.15)
0 0 0 1
where
€11
€3] = —F—— (516)
Vel + ¢
€21

$31 = T o
b e
Ve +

Multiplying Q1 E by Qs; we obtain

ca1 0 s3 O €11 €12 €13 €14 €11 €12 €13 €14
0 1 0 0 0 é99 €3 €94 0 eg2 €93 €94
Q31 QzlE = 0 0 = 0 . i
=831 C31 €31 €32 €33 €34 €32 €33 €34
0 0 0 1 €41 €42 €43 €44 €41 €42 €43 €44

(5.17)
Row 1 and row 3 are updated as a result of this computation. Similarly, we can
compute ¢4 and s4; and form Q43 to zero out eq;. Then, the subdiagonal elements
of the row 2 (e3; and ey;) and the subdiagonal element of the row 3 (eq3) are zeroed
in this way until the upper triangular matrix is obtained.

The resulting upper triangular matrix is

€11 €12 €13 €14
0 e e €24

—0Tp —
R=QTE=| o & (5.18)
0 0 0 éyu
where
Q = Q13Q42Q32Q01 Q3 Q2 (5.19)

Thus, in Given’s rotation, the subdiagonal elements of the first column are an-

nihilated first, then the elements of the second column, and so forth until an upper
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triangular form is eventually reached. The matrix Q is a product of matrices used
to zero elements of E. Each element e;; is zeroed by multiplying E by an orthogonal
matrix ;;. The matrix @);; is formed from the identity matrix by replacing the di-
agonal (i,¢) and (j,) elements by c;;, the (z,7) element by s;;, and the (j,7) element

by —s;; where

€j
¢ = ——=2i (5.20)
’ el + e

» Cij
S = 2 2
VE&ii T €j

Multiplying E by @,; updates row ¢ (e;) and row j (e;) of E:

e — —s;je; + ¢ e; (5.21)

e; — ¢je;+ 8;5€;

The element e;; becomes

A €ij€jj €jj€ij
bij = — = 2L = (5.22)
€j; T € €5 T €

Therefore, a subdiagonal element, e;;, is zeroed in this way, and the two rows e; and
e; are affected for each element e;; that is zeroed.

Systolic array implementations for QR decomposition have been developed by
Chen and Yao [7], Gentleman and Kung [27] and M. Moonenn and J. Vandewalle
[40]. These implementations require O(n?) processing elements (PEs) for matrix
triangularization. The systolic array [7] consists of boundary PEs and internal PEs.
In the arrays, each boundary PE computes the multiplication pairs (c;;,s:;), and
sends them to a neighboring internal PE. The internal PE receives the multiplication

pairs and a corresponding row element, updates the corresponding row element and
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computes the corresponding element of the upper triangular matrix. It also sends out
the multiplication pairs and the updated row element.

In the Chen and Yao’s systolic array [7], elements of the upper triangular matrix
R are stored in the registers of their corresponding PEs. However, they have to be
transferred to be used in the back-substitution module. Therefore, the total number
of input and output operations for an internal PE is 8, while the operations required
in the PE are 4 multiplications and 2 additions. This may result in an 1/0-bound
computation [26] [29], since the ratio of floating-point, operations to the data move-
ment [10] is low. We need more floating-point operations in a PE or we must reduce
the data movements to improve the ratio.

Our parallel architecture (see Fig. 5.6) improves the ratio by processing the data
by block, which reduces the number of data movements between each PE by reuse of
the data internally. In the architecture, input data is partitioned into column blocks
and each column block of F is assigned to a PE (i.e., column 1 is assigned in PE;,
column 2 is assigned in PE; and so on). Each PE receives the multiplication pairs
from an EAST neighboring PE, updates the corresponding row elements, annihilates
the elements of the subdiagonal, and sends the corresponding multiplication pairs to
a WEST neighboring PE.

When we use 4 PEs to reduce the 64 x 64 matrix to an upper triangular matrix,

it operates as follows :

1. PE; annihilates the subdiagonal elements of column 1 and passes multiplica-
tion pairs to PE,. After PE, finishes all the computations, it passes the results

to the Register Module (RM) and takes row 5 as the new assignment.
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€ d] €, d2 ep_l dp-l ep dp

Figure 5.6: QR decomposition Modulel

2. PE; starts to update column 2 as soon as the first one of the multiplication
pairs comes from PE,. After it has used all the multiplication pairs from PE;,
it starts to annihilate the subdiagonal elements of column 2. PE, also passes

its multiplication pairs to PE3 and takes row 6 as the new assignment.

3. This process continues until all the columns have been processed.

Figure 5.7: A processing element in QRM;
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Our architecture partitions the input data into column blocks and assigns them
one by one to each PE. A PE performs all the computations required for the column
and generates the resulting column of the output matrix. Passing the multiplication
pairs are the only data movements between PEs for the matrix triangularization
algorithm, and it is local and uni-directional. Therefore, this approach improves
the ratio of floating-point operations to the data movement by reducing unnecessary
data movements. Also, the design of the interconnection network is simplified since
the data movements are uni-directional. The PE also computes QT D (=B) while it
annihilates the subdiagonal elements.

The PE in the QR decomposition Modulel (QRM;) is shown in Fig. 5.7. PE;

performs as follows :
1. Receives column 7 of £ and row : of D from NORTH

2. Updates column 2
Forg=1toi—-1

For p = ¢ to col_size
receives multiplication pairs from WEST
elmp = ey
€qi = —Spg * EIMP + Cpg * €p;
€pi = Cpg * EtMP + Spq * €;
passes multiplication pairs to EAST

end For

end For
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3. Annihilates the subdiagonal elements
For p =1+ 1 to col_size
Tpi = \/‘m
Cpi = €iifTpi
Spi = €pi/Tpi
sends multiplication pairs to EAST

end For

4. Updates B (= QTD)
Forg=1toi—1
For t = 1 to num_eigen
receive intermediate results of by from WEST
btmp = by,
bt = —8iq * bimp + ciq * by
biy = cig * bimp + 844 * by
if 7 is not a last column
sends updated by to EAST
end For
end For
if 7 is not a last column
For t =1 to num_eigen
sends updated b; to EAST

end For
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5. Sends the results (column 7 of R) to SOUTH

Here, we can see that the ratio of floating-point operations to data movements is
increased. For example, when a M x M matrix is processed, the computations required

in a PE for the 2nd column are :

o column elements are updated A — 1 times.

— 4 multiplications and 2 additions for each update.

o M — 2 column elements are annihilated.

— 2 multiplications, 1 addition, 1 square root, 2 divisions for each annihila-

tion.

o 2K elements of B are updated.

— 2 multiplications and 1 addition for each update.

The total number of operations required to complete all the computations for the
2nd column in a PE is (6M + 4K — 8) multiplications, (3M + 4K — 4) additions,
(M —2) square roots, and (2M —4) divisions. We calculate the number of clock cycles
required to complete the computations for the 2nd column. The number of clock
cycles is computed based on the programmable TMS320C40 digital signal processing
(DSP) processor from Texas Instruments [21] (see Table 5.2). The computation of a
square root takes 11 clock cycles using TMS320C40.

From Table 5.2, the total clock cycles required to complete all the computations
for the 2nd column in a PE is 45M + 16K —78. The total number of data movements

to complete all the computations for the 2nd column in a PE is :

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



e input
— column 2 from IM (M).
— multiplication pairs from PE;_; ((M —1) x 2).

— intermediate B from PE;_; (K).

¢ output
— multiplication pairs to PE;4; (M - 1)+ (M — 2)) x 2).
— intermediate B to PE;;; (2K).

— results to OM (column 2 of R) (2).

operations clock cycles
ADDF floating-point addition 2
ADDI integer addition 2
ASSIGN assignment or = 1
BR.NT branch not taken 2
BR.T branch taken 4
DIVI integer division 4
DIVF floating-point division 8
LOGICAL | logical expression evaluation 2
MOD modulus operator 40
MULI integer multiplication 2
MULF floating-point multiplication 2
READ reading from a communication channel 1
WRITE writing to a communication channel 1

Table 5.2: The number of clock cycles required for a floating-point operation, based
on the TMS320C40

The total number of data movementsis TM + 3K — 6.
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Based on these results, we compute the ratio of the total computations to complete
the required computations in a PE versus the total data communications required in
a PE. Table 5.3 shows the rate of computational clock cycles to data movements when

the number of partial eigenvalues to be solved (K) is 4.

matrixsize | 8x8 (16 x16 | 32 x 32 | 64 x 64
rate 5.5806 | 5.9831 | 6.2000 | 6.3128

Table 5.3: The rate of computational clock cycles to data movements

From Table 5.3, the rate of floating-point operations to data movements becomes
high as the block size becomes large (in this application, the block size is the number of
elementsin a column). Also, the rate of computational clock cycles to data movements
is much higher than the 1.5 in the systolic array implementation [7]. This is an
advantage for high throughput applications.

Table 5.4 shows the simulation results for QRM; with 2 PEs in the module. In
the simulations, we use 64 x 64 matrices for £ and 64 x 4 matrices for the initial trial
matrix D. The same matrices are solved using 4 PEs in Table 5.5. Table 5.6, Table
5.7, Table 5.8, Table 5.9, and Table 5.10 show the simulation results when 6 PEs, 8
PEs, 10 PEs, 16 PEs, and 22 PEs are used respectively to solve the same problems.

The matrix dimension is 68 x 64, in the Tables. This is because the QRM; not
only computes the upper triangular matrix R from £ (64 x 64) but also updates the
trial matrix D (64 x4, see equation (5.8)). Therefore, a PE receives not only a column

of I (64 x 1 vector) but also a row of D (4 x 1 vector).
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algorithm | QRM;
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 2
run time | 149526925 cycles
real-time rate | 0.00145526
avg. utilization | 92.2662 %

Table 5.4: Simulation result for QRM; with 2 PEs

algorithm | QRM;
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 4
run time | 76518859 cycles
real-time rate | 0.00284374
avg. utilization | 90.1495 %

Table 5.5: Simulation result for QRM; with 4 PEs

algorithm | QRM;
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 6
run time | 51598841 cycles
real-time rate | 0.00421715
avg. utilization | 89.1253 %

Table 5.6: Simulation result for QRM,; with 6 PEs

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



algorithm | QRM;
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 8
run time | 39971479 cycles
real-time rate | 0.00544388
avg. utilization | 86.2883 %

Table 5.7: Simulation result for QRM; with § PEs

algorithm | QRM,;
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 10
run time | 32208966 cycles
real-time rate | 0.00675588
avg. utilization | 85.6674 %

Table 5.8: Simulation result for QRM; with 10 PEs

algorithm | QRM,
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 16
run time | 21562664 cycles
real-time rate | 0.0100915
avg. utilization | 79.9780 %

Table 5.9: Simulation result for QRM; with 16 PEs

-1
[ SN]
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algorithm | QRM,
matrix dimensions | 68 x 64
number of matrices | 50
number of PEs | 22
run time | 15311814 cycles
real-time rate | 0.0142112
avg. utilization | 78.9114 %

Table 5.10: Simulation result for QRM; with 22 PEs

The number of matrices refers to the number of consecutive covariance matrices
(say Ey, Ea,--- Ey9, Esg) processed in this module. The run time shows the total
clock cycles required to complete the computations for these matrices. The real-time
rate represents the highest possible input rate for which the data can be processed in

real-time.
real-time rate = (total number of input data)/(run time) (5.23)

A real-time rate 0.1 represents that the input data can be processed in real-time when
an element of data is input to this module every 10 clock cycles.

Table 5.4 shows that the real-time rate for 2 PEs is 0.00145526 even though it has
high utilization (92.2662 %) of the processing elements. The real-time rate can be
improved by increasing the number of PEs or by pipelining the internal operations
of the PEs. Table 5.11 shows the real-time rate and speedup as the number of PEs
is increased. It shows that as the number of PEs increases, the real-time rate also
increases.

In Table 5.11, N represents the number of PEs, and T(N) represents the run time.

It shows that as the number of PEs increases, the run time decreases and the real-time
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algorithm QRM,;

matrix size 68 x 64

number of matrices 50

N T(N) real-time rate | speedup | avg. utilization
cycles %

4 76518859 0.00284374 3.9082 90.1495

6 51598841 0.00421715 5.7957 89.1253

8 39971479 0.00544388 7.4793 86.2883

10 32208966 0.00675588 9.2848 85.6674

16 21562664 0.01009150 | 13.8690 79.9780

22 15311814 0.01421120 | 19.5308 78.9114

Table 5.11: Simulation results for QRM; with different number of processing elements

rate and the speedup increases almost linearly. The speedup was computed by
speedup = T'(1)/T(N) (5.24)

where, T(1) is a run time to execute all the processes using 1 PE, while T(N) is a
run time to execute all the processes using N PEs. In the Table, T(1) is assumed to
be 2 x T(2). Fig. 5.8 shows the speedup of the architecture as the number of PEs is
increased.

In many digital signal applications, the number of eigenvalues required for the
partial solution as well as the size of the matrix may vary with time. These proper-
ties make the use of the systolic array infeasible. This is because the systolic array
uses a fixed number of processing elements for a fixed sized matrix. In our parallel
architecture, the number of processing elements does not depend on the size of the
matrix to be processed (z.e., the same number of PEs can be used for different sizes
of matrices and/or for the solution of a different number of eigenvalues). Table 5.12

shows the average utilization of the processing elements when the matrix size changes.
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Figure 5.8: The speedup of QRM;
matrix size 50 x50 |62 x62 |63 x63|64x64|65x%65]70x70

avg. utilization (%) | 90.0842 [ 90.4069 | 90.7073 | 90.1495 | 90.3061 | 90.6712

Table 5.12: The utilization comparison for different matrix sizes. The number of
eigenvalues to be solved is assumed to be 4. Four PEs are used.

Table 5.12 shows that the size of the matrix may be an even number, or an
odd number without changing the number of PEs (the number of PEs is 4 in this
application) in QRM;. This is because the PEs can continuously receive the columns
of the matrix modulo the number of PEs (i.e., if the last column of E; is assigned to
P, then the first column of F, is assigned to PE3) so, it can continuously compute
its tasks without interruption.

The number of eigenvalues and the corresponding eigenvectors to be solved varies

with time in most of the signal processing applications. For example, the number of
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signals can be 1 or may be 6 for adaptive beamforming. Our parallel architecture siiil
can be used to solve this problem without having to change the number of PEs in the
module. Table 5.13 shows the simulation results when the number of eigenvalues to

be solved varies. It shows that, the same number of PEs can still be used with high

number of signals 1 2 3 4 5 6
avg. utilization (%) | 89.8986 | 89.9872 | 90.0708 | 90.1495 | 90.1971 | 90.2693

Table 5.13: The utilization comparison with varying of the number of eigenvalues to
be solved. E is a 64 x 64 matrix and B and D are the 64 x K matrices where K is
the number of eigenvalues to be solved. Four PEs are used.

utilization for a different number of eigenvalues to be solved. Therefore, this parallel

architecture is more flexible than the systolic array.

5.4 Back-Substitution Module

The back-substitution module (BSM) computes U from the equation

RU =B (5.25)

where, R and B are obtained from the QRM;. Since R is a M x M matrix and U
and B are M x K matrices, this module solves K elements of U simultaneously. For

example, when M is equal to 4 and K is equal to 2, we have

Ti1 T2 T3 T4 U1 Uiz bir b2
T22 T23 T4 U1 U2 | b1 by (5 96)
33 T34 U3 U3z b3y bsp
T44 Uy Ug2 bar  bao
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From equation (5.26), the linear equations are solved in reverse order. Therefore, the

fourth row of U is computed first.

b‘ll
Uy = —- (5.27)
T4
bao
Uy = —
744

Then, the third row of U is computed.

()31 — T34U41
ugy = — (5.28)
r33

b3y — rasug;
gy = —————
33

These procedures are repeated until the first row of U is obtained.

Fig. 5.9 shows the block diagram of the BSM.

v v o1 b rM-p+2bM-p+2 IM.p+1OM-p+1

.__............_....,.._»
PE, 5 PE, PE .

v Y Y \

Uy Up- | UM-p+2 UM-p+1

Figure 5.9: Back-Substitution Module

The PEs in the BSM operate similarly to the PEs in the QRM;. Each PE receives

the assigned row of R and the assigned row of B from the register modulel (RMj).
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Figure 5.10: A processing element in BSM

Then, it updates the row of B using the row elements of R and the row of U which
is received from the previous PE. It computes the row of U using the updated row of
R. Finally, it sends the results (row of U) to the next PE for updating the next row
of B and sends the results to RM, for the next module (QRM;). The block diagram
of the processing element of the BSM is shown in Fig. 5.10.

The internal operations of the PE; in the BSM are as follows :
1. Receive arow M —i of R and a row M — i of B from NORTH

2. Update arow M — ¢ of B
For k=M downto M —7 41
receive uy from WEST

br_i = bar—i — rv-igus
send u; to EAST

end For

3. Compute a row M — i of U
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Upr—i = bar—i/Tr—ipr—i

send by (k=M,M —1,---,i) to EAST
4. Send bM—z’ to SOUTH

Passing the rows of U (ugs) is the only interprocessor communications.

Table 5.14 shows the simulation results for the BSM. In the simulation, R is a
64 x 64 upper triangular matrix and B is a 64 x 4 matrix. We solved for a 64 x 4
matrix U using the back-substitution method. Each PE computes a row of R (in
this application, 4 elements) simultaneously. We set the number of PEs to 2 in the

simulation.

algorithm | BSM
matrix dimensions | 68 x 64
Number of matrices | 50
number of PEs | 2
run time | 13978626 cycles
real-time rate | 0.0155666
avg. utilization | 93.9478 %

Table 5.14: Simulation result for BSM with 2 PEs

In Table 5.14, the matrix dimension (68 X 64) means that a PE receives a row
of R (64 x 1) and a row of B (4 x 1) as an input data block. In the simulation, 50
consecutive matrices (50 Rs and 50 Bs) were input and processed. Table. 5.14 shows
that the BSM module has good utilization (93.9478 %) of the processing elements with
a real-time rate of 0.0155666. Also, we can increase the real-time rate by increasing

the number of PEs (see Table 5.15).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com



algorithm BSM

matrix size 68 x 64

number of matrices 50

N T(N) real-time rate | speedup | avg. utilization
cycles %

4 7123441 0.0305470 3.9247 92.1792

6 4710354 0.0461961 5.9354 91.9351

8 3697932 0.0588437 7.5603 88.7846

10 2977015 0.0730933 9.3918 88.2282

16 1985493 0.1095950 14.0808 82.6809

Table 5.15: Simulation results for BSM with different number of processing elements

Table 5.15 shows that the real-time rate is increased to 0.1095950 as the number
of PEs is increased to 16. Fig. 5.11 shows the speedup of the BSM. It shows that

the speedup is almost linear with increasing the number of PEs. This module can

14

12f

Speedup
@
x

1
2 4 6 8 10 12 14 16
Number of processor

Figure 5.11: The speedup of BSM

work very efficiently with changes in the input matrix size and/or the number of
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eigenvalues to be solved. Table 5.16 shows the varying of the average utilization of

PEs with varying of the input matrix size. Our results show that the utilization is

matrix size 50 x 50 | 62 x 62 | 63 x 63 | 64 x 64 | 65 x 65 | 70 x 70
avg. utilization (%) | 93.2548 | 93.4789 [ 93.8255 | 92.1792 | 92.8446 | 93.5957

Table 5.16: The utilization comparison for different matrix sizes. The number of
eigenvalues to be solved is assumed to be 4. Four PEs are used.

always high and does not vary much as a function of the size of the input matrix.
Table 5.17 shows the simulation results when the number of eigenvalues to be
solved varies. In the simulation, we assume that the number of eigenvalues required

for the partial solution varies from 1 to 6 for the 64 x 64 matrix. Table 5.17 shows

number of signals 1 2 3 4 5 6
avg. utilization (%) | 94.0818 | 93.1716 | 92.5320 | 92.1792 | 91.8030 | 91.5734

Table 5.17: The utilization comparison with varying of the number of eigenvalues to
be solved. R is a 64 x 64 matrix and B and U are the 64 x K matrices where K is a
number of eigenvalues to be solved. Four PEs are used.

that the average utilization of PEs is not affected much by the varying of the number
of eigenvalues required for the partial solution. This is because the changing of
the number of eigenvalues to be solved affects the matrix size to be processed and
changing the matrix size does not significantly affect the utilization of the system.
These simulation results show that the same number of PEs can be used to solve for
a different number of eigenvalues with different sizes for the input matrices with high

efficiency.
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5.5 QR Decomposition Module2

This module computes the QR decomposition of U (M x K ). However, only Q is
needed in the next computation. The QR decomposition using Given’s method creates
multiplication pairs and transfers these pairs to the next PE whenever it annihilates
a subdiagonal element to obtain an upper triangular matrix R of U (= QR). After
R is obtained, the @ is computed by the O(M?) matrix-matrix multiplications (see

equation (5.19) in section 5.3 (QRM,)).

Q = Qnn-1Q@nn-2-Q31Q2,1 (5.29)

This procedure requires lots of computations and data transfers, because it unneces-
sarily computes matrix R to get the matrix ). Therefore, the Given’s method may
not be suitable to find only @ for U, even though this method has good parallelism
for finding R for U.
We used the modified Gram-Schmidt method to compute only Q for UU. This
method computes @) directly without creating the ¢, s pairs. The procedures are :
Fori=1toK
q; = u;/norm(u;)
Forj=i+1to K
u; = u; — q;(qf uy)
end For
end For

where, u; is an ¢th column of U, and q; is an ith column of @ which is the result of

32
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the QR decomposition of U = QR. The norm(u;) is defined by

norm(u;) = (ud; + ;4 -+ +hs)? = (u"u)

B[

(5.30)

where, u;; is an element of u;.

U Uy L up,
PE, ¥ PE, —®PE [ ™ PE,
¥ v v
qi 9z qp-l qp

Figure 5.12: QR decomposition Module2
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—P PE. —B

1

'

q;

Figure 5.13: A processing element in QRM,
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Fig. 5.12 shows the block diagram for the QR decomposition module2 (QRM).
In Fig. 5.12, each PE receives a column of U from the register module and the
resulting columns of @ from the previous PE. Then, the PE updates the received
column of U and computes the corresponding column of @ using the updated column
of U. Therefore, the column of @ is the only data transferred in the module. The

procedure for the PE is as follows :
1. Receive column 7 of U (u;) from NORTH

2. Update column 7
Fory=1to7~1
Receive q; from WEST
tmpl = q) *u;
end For

u; = u; — q; * tmpl

3. Compute q;
tmp2 = norm(u;)

q; = u;/tmp2
4. Send q; to EAST and NORTH

Fig. 5.13 shows a processing element in the QRM,.
Table 5.18 shows the simulation results for the QRMj;. In the simulation, U was a
64 x 4 matrix and 4 PEs were used. Each PE received a column of U and computed a

column of @) of the QR decomposition of U using the modified Gram-Schmidt method.
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Fifty consecutive matrices of U were processed.

algorithm QRM2

matrix size 64 x 4

number of matrices 50

N T(N) real-time rate | speedup | avg. utilization
cycles %

2 1001735 0.0127778 84.0039

4 629450 0.0203352 3.1828 83.5192

Table 5.18: Simulation results for QRM,

Table 5.18 shows that even though the average utilization (83.5192 %) of this
method is lower than that for the QR Given’s method, it has a good real-time rate
(0.0203352) compare to the QRM; (0.00284374). This is due to reducing the unnec-

essary computations and unnecessary data movements.

5.6 Matrix-Matrix Multiplication Module

The matrix-matrix multiplication module (MM) performs the matrix-matrix mul-
tiplications. Considering a matrix-matrix multiplication as repeated matrix-vector

multiplications is one of the more popular methods.

T = EQ (5.31)
= (EQh"‘aECIK)

M M
= O gaei > gixes)

i=1 =1

= (tl," : at]\")
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Where, E is a M x M matrix, Q) is a M x K matrix, T is a M x K matrix, e; is a
column ¢ of E, q; is a column ¢ of @, t; is a column i of T, and ¢;; is a (¢, j) element

of Q. The first column of T (t,) is computed by
t1 = quer +guez + -+ + quien (5.32)

In the parallel architecture, an element of @ (g;;) and a column of E (e;) are assigned
to each PE (PE;). Therefore, PE; computes tmp = q1;e; and sends tmp to PE,, PE,
computes tmp = tmp + ¢z1e2 and sends the results to the next processing element
and so on until all the columns have been processed. Computing of t, is the same
except the elements q11, g21, - -+, a1 are replaced by the elements ¢y3, g2, - - -, qnras
respectively. Therefore, for the matrix-matrix multiplication (EQ), each PE (PE,)
receives a column of E (e;) and a row of @ (q;) from the NORTH channel and
receives intermediate results of £Q (tmp) from the previous PE (PE;_;). The PE;
computes tmp = tmp + e; * q; and sends the results to the next PE until all the
columns of £ and all the rows of @ have been processed. The total data movements
for a PE is 2MK+M+K while the total number of floating-point operations is MK
multiplications and MK additions. Therefore, the rate of floating-point operations to
data movements is low in this case.

Since the above algorithm has a low ratio of floating-point operations to data
movements, we use the block algorithm [15] [17] to solve this problem. In the block

algorithm, the matrix is partitioned into submatrices as follows :

Eynw - By Qu - Qip
T = : : : : (5.33)

Enn - Erg Qu - QLp
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Here, the size of a submatrix is B x B. In the parallel architecture (see Fig. 5.14),
Eq1 and @)y are assigned to a PE,.

The PE; computes E;;@;; and sends it to PE, and it receives the next assigned
submatrix for the next multiplications. As soon as PE, receives Ey; and @, it
computes F12Q,1 and adds these to E11Q:11 and sends the results to the next PL.
Therefore, each PE processes B® multiplications and B*(B — 1) + B? additions while
the number of data movements is 4B2. Therefore, the rate of floating-point opera-
tions to data movements is 2B3/4B? while the rate for the conventional method is

2MK/2MK 4+ M + K. The ratio for this rate is

. 2B%/4B? 2MK + M+ K)B
ratio = ~ ~ — = - (5.34)
CMK/2MK + M + K) AM K

Equation (5.34) shows that the ratio increase linearly as B increase. The block
diagram for the matrix-matrix multiplication module with L PEs is shown in Fig.
5.14.

Table 5.19 shows the simulation results, when a 64 x 64 matrix is multiplied by a

64 x 4 matrix with 2 PEs. We set the submatrix size to 4 x 4. The simulation results

algorithm | MM
matrix dimensions | 64 x 64 by 64 x 4
number of matrices | 50
number of PEs | 2
run time | 26151250 cycles
real-time rate | 0.0156627
avg. utilization | 97.5839 %

Table 5.19: Simulation result for MM with 2 PEs
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Figure 5.14: Matrix-matrix Multiplication Module

shows that it has good utilization (97.5839 %) of the PEs when 2 PEs are used. Table
5.20 shows the simulation results for MM with different numbers of PEs. With the

increasing of the number of PEs (16), this architecture still has a good utilization
(96.8444 %, see Table 5.20) which makes the system speedup almost linear (see Fig.

5.15).
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algorithm MM

matrix size 64 x 64 by 64 x 4

number of matrices 50

N T(N) real-time rate | speedup | avg. utilization
cycles %

4 13113883 0.0312341 3.9883 97.3264

6 8759750 0.0467593 5.9708 97.3975

8 6610683 0.0619603 7.9118 97.1892

10 5310716 0.0771271 9.8485 97.2095

16 3359083 0.1219380 15.5705 96.8444

Table 5.20: Simulation results for MM with different number of processing elements

16

14
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10

Speedup

1
2 4 6 8 10 12 14 16
Number of processor

Figure 5.15: The speedup of MM
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5.7 K x K Eigenvalue Solution Module

The eigenvalue solution module (ESM) computes the full eigenvalue solution for the
K x K symmetric matrix H required in the sixth step of the partial eigenvalue solution
algorithm. In this applications, K is the number of eigenvalues required for the partial
solution. Usually, K is much smaller than M. For example, if we want to compute 4
signal eigenvectors from a 64 x 64 matrix, then H is a 4 x 4 matrix. Since the matrix
size of H is small, a PE in the ESM performs all the computations required in one
iteration.

Several methods exist to compute the eigenvalues and the corresponding eigen-
vectors of a symmetric matrix [4] [9] [34] [42] [55]. We use the QR-inverse iteration
method to compute all of the eigenvalues and the corresponding eigenvectors. We
make this choice because the QR decomposition is stable due to using orthogonal
transformations, and its convergence rate can be improved by using the origin-shift

method [19].

PE, [~# PE, ———®PE | PE

my

Figure 5.16: Eigenvalue Solution Module
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Fig. 5.15 shows the block diagram for the ESM. In the architecture, the first
processing element performs the matrix tridiagonalization to reduce the computa-
tional tasks for the following PEs. The second through the last PEs perform QR
decomposition of the tridiagonal matrix to find the eigenvalues and the correspond-
ing eigenvectors. Only the last PE has the convergence checker. It computes the
quantities conver_chk_ as

Fori=1to K

| His = ;|
H,

conver_chk_i =

where, H,-i,l- and H7; represent the input diagonal element of H and the resulting
diagonal element of H, respectively. It compare the quantities of conver_chk_i to
the allowable tolerance. If it satisfies the convergence condition (i.e., conver_chk_i is
smaller than the allowable tolerance), then it sends the output to RMg for the next
computation. If not, only the last PE performs the computations for the another
iteration step. Since this module compute a small matrix compared to the other
modules, it can afford the time required for this computation.

Table 5.21 shows the simulation results for the ESM. In the simulation, 4 x 4

matrices were processed using 8 PEs. The table shows that the ESM has good

utilization (94.4041 %) of the PEs with a good real-time rate.

5.8 The Real-Time Rate for the Overall System

In this subsection, we show the real-time rate for the overall system. The real-time
rate may be changed by the size of the input matrix and/or the number of eigenvalues

to be solved. Table 5.22 shows the real-time rate versus the number of PEs in each
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algorithm | ESM
matrix dimensions | 4 x 4
number of matrices | 50
number of PEs | 8
real-time rate | 0.0231528
run time | 276425 cycles
avg. utilization | 94.4041 %

Table 5.21: Simulation result for ESM with § PEs

module when the modules are processed to extract the 4 smallest eigenvalues and the

corresponding eigenvectors from a 64 x 64 matrix.

module | number of PEs | real-time rate
QRM, 22 0.0142112
BSM 2 0.0155666
QRM, 4 0.0203352
MM, 2 0.0156627
MM, 2 0.0156627
ESM 2 0.0061663
MM; 2 0.0156627

Table 5.22: Real-time rate to extract the 4 smallest eigenvalues and the corresponding
eigenvectors from a 64 x 64 matrix

In the overall system, QRM); receives the block of input data and sends the result-
ing block to the buffers in register modulel (RM;). It then receives the next input
data and performs the computations for the next block of data. The BSM receives
data from the buffer in RM, and performs the back-substitution. Therefore, the BSM
has to work faster than QRM; to avoid becoming a bottleneck for the whole system.

Since the data transfer between modules is performed asynchronously, the only re-
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quirement on the speed of the modules is that each of the modules must perform at
a higher rate than QRM;.

From Table 5.22, the real-time rate for ESM is 0.0061663 which means the av-
erage clock cycles required to perform all the processing for an element is 162.2 (=
1/0.0061663) cycles. The input matrix size of ESM is 4 x 4 in this application. There-
fore, the total clock cycles to perform all of the computations for this 4 x 4 matrix is
2659 (16 x 162.2) cycles. In the QRM;, the average number of clock cycles required
to perform all of the processing for an element is 70.4 (= 1/0.0142112) cycles. The
QRM; has to do the computations for all of the elements for a 68 x 64 matrix and it
takes 306240 (68 x 64 x 70.4) clock cycles to perform these computations. Therefore,
the ESM can work faster than the QRM); even though the real-time rate for the ESM
is smaller than that for the QRM;. In this applications, the ESM can perform the
iterations up to 115 times without stopping the system.

Table 5.22 shows that the overall system can processes a 64 x 64 matrix (number
of eigenvalues to be solved is 4) with the real-time rate of 0.0142112 using 36 PEs.
Since it takes average 70.4 (= 1/0.00142112) clock cycles to process one element of
a 68 x 64 matrix, the total clock cycles required to process a whole matrix is 306240
(= 68 x 64 x 70.4) clock cycles. Therefore, this system computes this application
(matrix size is 64 x 64, and 4 eigenvalues are extracted) approximately 163 times (=
50 x 10°/306240) per a second using a 50 MHz processors (such as TMS320C40) after

filling the pipeline of the modules.
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6

Summary and Future Research

6.1 Summary

In this dissertation, we propose a modified eigenvector method (MEVM) which not
only uses the best weighting for the eigenvectors of the covariance matrix but also
enhances the estimate of the covariance matrix to obtain the best spectral estimate
for the direction-of-arrival problem. We evaluated the performance of the MEVM
and compared the results with the conventional EVM method. By comparing the
perturbation angle of the noise-subspace, we show that the spectral estimate obtained
using the proposed method is less distorted than the spectral estimate chtained using
the conventional covariance matrix method (EVM) under the same noise conditions.
Furthermore, the MEVM has better resolution and accuracy than the conventional
method for sources with a small difference in the direction-of-arrival. The superiority
of the MEVM was shown by our simulation results.

We implemented a partial eigenvalue solution algorithm using the BDPA to pre-
vent this from becoming the bottleneck for the proposed system. We showed that
the parallel architecture for the partial eigenvalue solution module was very flexible

in the sense that many high performance DSP algorithms can efficiently be mapped
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onto it with promising results. OQur simulation resuits for QRM;, BSM, QRM,, MM,
and EVM have all shown that the architecture performs well with varying the size of
the input matrix and the number of eigenvalues to be solved.

The results obtained in chapter 5 show that our approach increases the ratio of
floating-point operations to data movements significantly over that for the systolic
array implementations to balance the computations and data transfers. Also, the
architecture is programmable and can perform the operations with as few as two
processing elements (if real-time output is not a concern), and with more processing
elements for faster performance with the speedup directly related to the number of
processing elements used.

As far as we know, this parallel architecture is the first to implement the partial
eigenvalue solution algorithm with the number of eigenvalues required for the partial

solution varying with time.

6.2 Future Research

Many signal processing and matrix operation algorithms need to be mapped onto
this architecture to truely show its computational power. Also, the performance of
this architecture on the mapped algorithms needs to be compared to comparable
architectures such as the hypercube, systolic array, and wavefront array.

Next, since the architecture is very flexible and has programmable processing
elements, a library for each module can be developed. The modules can be used
to implement digital signal processing algorithms and the matrix operations on this

architecture. Also, the high efficiency and linear speedup obtained from this archi-
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tecture along with its versatility in handling multiple sized problems will provide the

necessary supporting justification for this development.
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